

Journal of Molecular Science

An In-Depth Review on Floating Microspheres for Stomach-Targeted Drug Delivery

Mansi sangari¹, Disha dutta^{2*}, Ramsha aslam³

1,2*,3Devsthali Vidyapeeth College of Pharmacy, Rudrapur Uttarakhand, India

Article Information

Received: 15-10-2025

Revised: 06-11-2025

Accepted: 26-11-2025

Published: 16-12-2025

Keywords

Floating microspheres, gastroretentive drug delivery, hollow microspheres, buoyancy, sustained release, bioavailability enhancement

ABSTRACT

Gastroretentive drug delivery systems have gained significant attention as a strategy to enhance the bioavailability of drugs that are mainly absorbed in the upper gastrointestinal tract. Among these systems, floating microspheres stand out due to their ability to combine extended gastric retention with the advantages of multiple-unit dosage forms. Their low-density structure enables them to float on gastric fluids, allowing the drug to be released gradually at the site where it is best absorbed. This review summarizes the fundamental concepts of floating microspheres, including the mechanisms that provide buoyancy, factors affecting gastric retention, and formulation approaches used to develop stable and effective systems. Various preparation methods—such as solvent evaporation, ionotropic gelation, and hot-melt techniques—are examined, along with critical evaluation parameters like particle size, floating ability, drug loading efficiency, and release characteristics. Recent developments in polymer selection, manufacturing processes, and clinical applications have further enhanced the potential of floating microspheres for targeted and sustained drug delivery. Overall, this review emphasizes the important design considerations and future directions of floating microsphere technology for improving oral drug delivery.

©2025 The authors

This is an Open Access article

distributed under the terms of the Creative Commons Attribution (CC BY NC), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers. (<https://creativecommons.org/licenses/by-nc/4.0/>)

1. INTRODUCTION:

The oral route remains the most preferred pathway for drug administration due to its convenience, patient compliance, and cost-effectiveness¹. However, conventional oral dosage forms face significant limitations when delivering drugs with site-specific absorption windows, particularly those absorbed primarily in the stomach or upper small intestine². The physiological constraints of the gastrointestinal tract, including variable gastric emptying times and regional differences in drug absorption, pose substantial challenges to therapeutic

efficacy. Gastroretentive drug delivery systems (GRDDS) have been developed to overcome these limitations by prolonging the residence time of dosage forms in the stomach³. By maintaining drugs in the gastric environment for extended periods, these systems can maximize absorption for compounds with pH-dependent solubility, narrow absorption windows, or local therapeutic action in the upper gastrointestinal tract⁴. Among the various gastroretentive technologies, floating drug delivery systems have gained considerable attention due to their ability to remain buoyant on gastric contents without affecting gastric emptying rate. Floating microspheres represent an advanced iteration of gastroretentive technology, combining the benefits of multiparticulate systems with controlled buoyancy characteristics⁵. Unlike single-unit floating tablets, microspheres offer several advantages including reduced risk of dose dumping, minimized local irritation, predictable gastric retention independent of meal composition, and improved distribution throughout the gastric mucosa⁶. The hollow or porous structure of these microspheres provides density lower than gastric fluids, enabling sustained flotation and controlled drug release. This review provides a comprehensive analysis of floating microsphere technology,

encompassing fundamental principles, formulation strategies, characterization techniques, and therapeutic applications. Understanding the intricate relationship between formulation variables and system performance is essential for rational design and optimization of these promising drug delivery platforms.

2. Physiological Considerations of the Gastric Environment:

2.1 Gastric Anatomy and Physiology:

The stomach serves as a temporary reservoir for ingested food and initiates the digestive process through mechanical and chemical mechanisms⁷. The gastric environment presents unique physiological characteristics that influence drug delivery system behavior, including acidic pH (1.5-3.5 in fasted state, 3-7 in fed state), pepsin secretion, mucus layer coating, and rhythmic peristaltic contractions⁸. Gastric emptying represents a critical determinant of oral drug bioavailability. The process is regulated by neural and hormonal mechanisms, with the migrating motor complex (MMC) playing a central role during fasted states⁹. The MMC consists of four phases, with Phase III characterized by intense contractions that sweep undigested materials from the stomach into the small intestine, occurring approximately every 90-120 minutes during fasting¹⁰.

2.2 Factors Affecting Gastric Retention:

Multiple physiological and formulation-related factors influence the gastric residence time of drug delivery systems. Physiological variables include fed or fasted state, gastric pH, gender, posture, age, and disease conditions¹¹. The presence of food significantly extends gastric retention time, with high-calorie meals, particularly those rich in fats and proteins, promoting prolonged retention compared to fasted conditions¹². Formulation characteristics affecting retention include particle size, density, shape, and floating capacity. Systems with diameter greater than the pyloric sphincter opening (approximately 12.8 mm) demonstrate enhanced retention, though this advantage is limited during Phase III of the MMC¹³. Floating systems with density less than 1.0 g/cm³ remain buoyant on gastric contents, avoiding the sweeping action of housekeeping waves and achieving prolonged gastric residence¹⁴.

3. Fundamental Principles of Floating Microspheres:

3.1 Mechanism of Floatation:

Floating microspheres are able to remain buoyant in the stomach because their overall density is kept

lower than that of gastric fluids, which typically ranges from 1.004 to 1.010 g/cm³. This low density can be achieved in two main ways: either by incorporating lightweight, low-density excipients into the formulation, or by creating hollow or porous microspheres that trap air or gas within their structure¹⁵. Their ability to float can be explained using Archimedes' principle, which states that the buoyant force (F_b) acting on a microsphere depends on the difference between the density of the surrounding fluid (D_f) and the density of the microsphere (D_s), multiplied by gravitational acceleration and the particle's volume¹⁶. For the microspheres to maintain floatation over an extended period, the buoyant force must consistently remain greater than the gravitational force pulling them downward. This balance ensures prolonged gastric retention, which is essential for effective drug delivery¹⁷.

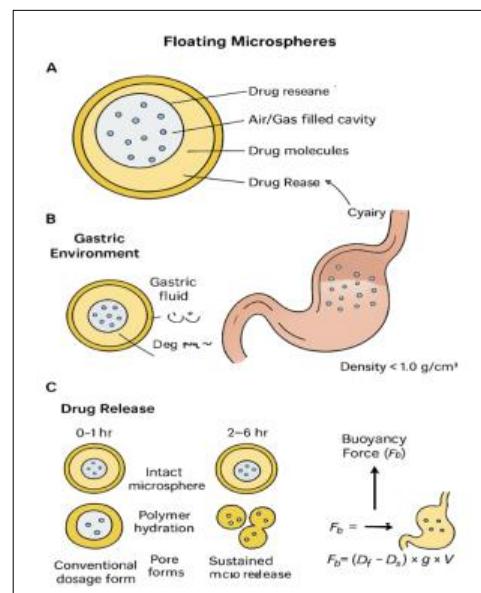


Figure: Schematic Representation of the Mechanism of Floating Microspheres in the Gastric Environment

3.2 Classification of Floating Microspheres

Floating microspheres can be classified based on their structural characteristics and mechanism of buoyancy:

Hollow Microspheres: These microspheres consist of a drug-loaded polymeric shell that surrounds a central hollow cavity filled with air or an inert gas. The presence of this internal cavity significantly reduces the overall density of the particle, allowing it to remain buoyant in gastric fluids for an extended period. Meanwhile, the outer polymer shell plays a crucial role in regulating the release of the drug, ensuring a controlled and sustained delivery profile. By combining buoyancy with controlled release, hollow microspheres provide an

efficient approach for improving gastric retention and enhancing the therapeutic effectiveness of orally administered drugs¹⁸.

Porous Microspheres: These microspheres feature a continuous porous network distributed throughout the polymer matrix. The interconnected or closed pores trap air within the structure, lowering the overall density so that it becomes lighter than gastric fluids. This trapped air is what allows the microspheres to float for extended periods once they enter the stomach. The porous architecture also influences drug release, as the internal channels can facilitate controlled diffusion of the drug from the matrix. By combining reduced density with a structured release pathway, porous microspheres provide an effective strategy for enhancing gastric retention and improving oral drug delivery performance¹⁹.

Matrix-Type Microspheres: In this approach, the drug is uniformly dispersed within a swellable polymer matrix that also contains fatty excipients or effervescent agents. When the formulation comes into contact with gastric fluid, the polymer begins to hydrate and swell, while the effervescent components release gas—typically carbon dioxide. This generated gas becomes trapped within the swollen matrix, reducing its overall density and enabling the system to float on gastric contents. The combination of swelling, gas entrapment, and gradual drug diffusion supports prolonged gastric retention and controlled drug release, making this design highly effective for gastroretentive delivery²⁰.

3.3 Advantages of Floating Microsphere Systems:

Floating microspheres offer numerous advantages over conventional dosage forms and single-unit floating systems. The multiparticulate nature provides predictable gastric dispersion and retention, reducing inter- and intra-subject variability²¹. The small particle size (typically 50-1000 μm) enables passage through the pyloric sphincter even during fed states while maintaining gastric residence through flotation²². These systems demonstrate enhanced bioavailability for drugs with absorption windows in the upper gastrointestinal tract, reduced frequency of administration, minimized fluctuations in plasma drug concentrations, and improved patient compliance²³. The gradual drug release from floating microspheres decreases the risk of local tissue irritation and adverse effects associated with high drug concentrations²⁴.

4. Formulation Components and Selection Criteria:

4.1 Polymeric Materials:

Polymer selection represents a critical determinant of floating microsphere performance, influencing buoyancy characteristics, drug release kinetics, and system stability. Both synthetic and natural polymers have been successfully employed in floating microsphere formulation.

Synthetic Polymers: Cellulose derivatives including hydroxypropyl methylcellulose (HPMC), ethyl cellulose (EC), and cellulose acetate demonstrate excellent film-forming properties and controlled release characteristics²⁵. Acrylic polymers such as Eudragit RS, RL, and S100 offer pH-dependent or pH-independent release profiles depending on functional group composition²⁶. Chitosan, though natural in origin, has been extensively modified for floating microsphere applications due to its mucoadhesive properties and biodegradability²⁷.

Natural Polymers: Sodium alginate, gelatin, albumin, and various gums have been investigated for floating microsphere preparation. These materials offer advantages of biocompatibility, biodegradability, and low toxicity, though they may demonstrate inferior mechanical strength and less predictable release characteristics compared to synthetic alternatives²⁸.

Polymer Properties for Optimal Performance: An ideal polymer for formulating floating microspheres should possess several key characteristics to ensure effective performance. It should have an appropriate molecular weight that supports the desired drug release kinetics, neither too fast nor too slow. Adequate hydrophobicity is essential to limit rapid water penetration, helping maintain the microsphere's structure and buoyancy. The polymer must also exhibit good film-forming ability to create strong, uniform shells around the microspheres. Chemical stability within the acidic gastric pH range is crucial to prevent degradation during stomach residence. Additionally, the material must be non-toxic, biocompatible, and capable of providing reproducible physicochemical properties to ensure consistent formulation quality.

4.2 Active Pharmaceutical Ingredients

Drug selection significantly influences formulation strategy and system performance. Ideal candidates for floating microsphere delivery include compounds with narrow absorption windows in the upper GIT, pH-dependent solubility (higher solubility in acidic pH), local action in stomach, degradation in alkaline environment, and poor bioavailability from conventional formulations²⁹.

Drug properties affecting formulation design include aqueous solubility, partition coefficient, molecular weight, stability in gastric environment, and dose requirements³⁰. Highly water-soluble drugs may require additional strategies to prevent rapid release and maintain buoyancy, while poorly soluble compounds may benefit from enhanced dissolution in the gastric environment.

4.3 Plasticizers and Release Modifiers:

Plasticizers enhance polymer flexibility and reduce brittleness of microsphere shells. Common plasticizers include dibutyl phthalate, polyethylene glycol, propylene glycol, and triacetin³¹. The selection and concentration of plasticizer affect mechanical properties, drug permeability, and release rate. Release modifiers such as hydrophobic materials (stearic acid, glycerylmonostearate) retard drug release, while hydrophilic materials (polyvinylpyrrolidone, sodium starch glycolate) enhance dissolution and release³². The incorporation of effervescent agents (sodium bicarbonate, citric acid) generates carbon dioxide in acidic medium, creating porous structures that enhance buoyancy and modulate release kinetics³³.

5. Preparation Methods:

5.1 Emulsion Solvent Diffusion Method:

This widely employed technique involves dissolving the polymer and drug in a volatile organic solvent (dichloromethane, ethanol, acetone), which is then emulsified into an aqueous phase containing a surfactant under continuous stirring³⁴. The organic solvent diffuses into the aqueous phase and evaporates at the interface, causing polymer precipitation and microsphere formation. The hollow structure develops as the solvent diffuses from the interior, creating internal cavities that impart buoyancy³⁵.

Process Parameters: The preparation of floating microspheres generally involves optimizing several key formulation parameters, such as maintaining a polymer concentration between 1–5% w/v and adjusting the stirring speed within the range of 500–2000 rpm to control particle size and uniformity. The process is typically conducted at a moderate temperature of 25–40°C to ensure proper solvent evaporation and polymer solidification. A solvent-to-aqueous phase ratio of 1:5 to 1:10 is used to achieve stable emulsification, while the emulsification time is usually maintained between 2–6 hours to allow complete formation and hardening of the microspheres. The method offers advantages of simplicity, room temperature processing, and applicability to thermolabile drugs. However, limitations include residual solvent traces, potential drug loss into aqueous phase, and requirement for solvent removal³⁶.

5.2 Emulsion Solvent Evaporation Method:

The solvent evaporation method is similar to the solvent diffusion technique but differs in the way the solvent is removed, relying on gradual evaporation rather than rapid diffusion. In this process, the drug–polymer organic solution is emulsified into an aqueous phase and kept under constant stirring while the organic solvent slowly evaporates. As the solvent is removed, the polymer precipitates and solidifies around the drug particles, forming microspheres³⁷. Increasing the temperature to 40–60°C or applying reduced pressure can accelerate the solvent evaporation rate, improving process efficiency. Compared to solvent diffusion, this method provides better control over microsphere size distribution, polymer deposition rate, and drug entrapment efficiency. The slow and uniform solidification promotes the formation of smooth, spherical particles with controlled porosity, ensuring improved stability and predictable drug release characteristics³⁸.

5.3 Ionotropic Gelation Method:

Particularly suitable for natural polymers like alginate and chitosan, this method involves dropwise addition of polymer solution containing drug into a cross-linking agent solution (calcium chloride for alginate, sodium tripolyphosphate for chitosan)³⁹. Immediate gelation occurs at the interface, forming microspheres that can be recovered by filtration. For floating properties, gas-forming agents or low-density materials are incorporated into the polymer solution prior to gelation. The method operates under mild conditions without organic solvents, making it suitable for sensitive biological molecules⁴⁰.

5.4 Spray Drying Technique

This single-step process involves atomizing a drug–polymer dispersion or solution into a hot drying medium, causing rapid solvent evaporation and particle formation⁴¹. Spray drying parameters including inlet temperature (100–200°C), feed rate (5–20 mL/min), atomization pressure (2–5 bar), and aspirator rate control microsphere characteristics. The rapid solidification prevents complete particle compaction, creating porous structures with low density. Incorporation of volatile components or foaming agents further enhances porosity and buoyancy⁴². Advantages include scalability, continuous processing, and narrow particle size distribution, though heat-sensitive drugs may undergo degradation.

5.5 Novel and Emerging Techniques Electrospraying:

Electrospraying involves applying a high-voltage electric field to a polymer–drug solution, causing it to break into fine, charged droplets that are rapidly

atomized. As these droplets travel toward a grounded collector, the solvent evaporates, allowing the polymer to solidify and form uniform microspheres. This technique offers precise control over particle size, morphology, and distribution by adjusting parameters such as voltage, flow rate, needle diameter, and polymer concentration. Because the droplets are formed through electrical forces rather than mechanical stirring, the method produces highly spherical, smooth particles with narrow size ranges, making it ideal for controlled drug delivery applications⁴³.

Supercritical Fluid Technology: Supercritical fluid technology uses supercritical carbon dioxide either as a solvent or an anti-solvent to precipitate the polymer and drug into fine microspheres. When CO₂ acts as an anti-solvent, it rapidly diffuses into the polymer solution, reducing solubility and causing instantaneous particle formation. In solvent mode, CO₂ dissolves the polymer–drug mixture and then depressurization leads to controlled precipitation. Because the process occurs at relatively low temperatures and avoids the use of organic solvents, it prevents thermal degradation

and eliminates solvent residue concerns. The method also allows precise control over particle size, morphology, and purity, making it highly suitable for sensitive drug formulations⁴⁴.

3D Printing: Additive manufacturing—particularly 3D printing technologies—is increasingly being explored for designing floating microspheres with highly controlled architecture, porosity, and spatial drug distribution. These techniques allow researchers to tailor the internal structure of microspheres far more precisely than conventional fabrication methods. By adjusting printing parameters, it becomes possible to engineer microspheres with predictable buoyancy, release kinetics, and mechanical strength. However, current 3D printing platforms are generally restricted to producing larger particle sizes, limiting their suitability for true microsphere-scale applications. Despite this limitation, ongoing advancements in micro-scale printing and novel printable biomaterials are expected to broaden the feasibility of additive manufacturing for next-generation floating microsphere systems⁴⁵.

Table 1: Comparison of Different Preparation Methods for Floating Microspheres

Method	Principle	Organic Solvent	Size Range (μm)	Advantages	Limitations
Emulsion Solvent Diffusion	Solvent diffusion from dispersed to continuous phase	Required (DCM, ethanol, acetone)	50-500	Simple process, room temperature, good reproducibility	Residual solvent, drug loss to aqueous phase
Emulsion Solvent Evaporation	Evaporation of organic solvent under stirring	Required (DCM, chloroform)	100-800	Better size control, good entrapment	Higher temperature, longer processing time
Ionotropic Gelation	Ionic cross-linking of polymers	Not required	200-1000	Mild conditions, no organic solvents, biocompatible	Limited to specific polymers, lower mechanical strength
Spray Drying	Atomization and rapid drying	Required or aqueous	10-100	Scalable, continuous process, narrow distribution	High temperature, expensive equipment
Electrosprayi ng	Electrostatic atomization	Required	1-50	Precise size control, monodisperse	Low throughput, specialized equipment
Supercritical Fluid	CO ₂ -based precipitation	Minimal/none	5-100	No residual solvent, mild conditions	High equipment cost, complex process

6. Characterization and Evaluation Parameters:

6.1 Particle Size and Size Distribution:

Particle size significantly influences flotation behavior, drug release kinetics, and gastric retention. Techniques for size determination include optical microscopy, laser diffraction, and dynamic light scattering⁴⁶. The optimal size range for floating microspheres is typically 100-1000 μm, balancing buoyancy capacity with gastric emptying considerations. Size distribution is quantified using parameters such as mean diameter, polydispersity index, and span. Narrow size distributions provide more predictable and reproducible performance characteristics⁴⁷.

6.2 Surface Morphology

Scanning electron microscopy (SEM) enables detailed visualization of microsphere surface characteristics, including smoothness, porosity, and structural integrity⁴⁸. Surface morphology influences drug release mechanisms, with porous surfaces facilitating diffusion-controlled release and

smooth surfaces promoting erosion or swelling-controlled release. Atomic force microscopy (AFM) provides additional surface topography information at nanoscale resolution, revealing surface roughness parameters and mechanical properties⁴⁹.

6.3 Buoyancy Assessment:

In vitro floating behavior of microspheres is typically evaluated by dispersing them in simulated gastric fluid (pH 1.2) containing 0.02% Tween 20 and maintaining the medium at 37°C. Their buoyancy performance is then monitored at predetermined intervals for 12–24 hours to assess sustained flotation⁵⁰. Important parameters include the floating lag time, which is the time required for microspheres to ascend to the surface; the total floating time, representing how long they remain buoyant; and the buoyancy percentage, indicating the proportion of microspheres that continue to float. The buoyancy percentage is calculated mathematically using the formula: Buoyancy (%) = $(W_f / (W_f + W_s)) \times 100$, where W_f denotes the weight of floating microspheres and W_s represents the weight of settled ones⁵¹.

6.4 Density Determination:

True density is measured using gas pycnometry, while apparent density is determined by liquid displacement method using solvents that do not cause swelling⁵². Bulk density and tapped density provide information on powder flow properties and compaction behavior. Density values below 1.0 g/cm³ are essential for sustained flotation. The relationship between density and flotation capacity enables prediction of gastric retention behavior⁵³.

6.5 Drug Entrapment Efficiency:

Drug loading and entrapment efficiency are critical parameters that reflect how effectively a drug is incorporated into floating microspheres and ultimately determine the formulation's practical usefulness. To assess these parameters, a measured quantity of microspheres is dissolved or extracted using a suitable solvent, after which the drug content is quantified using analytical methods such as UV spectroscopy, HPLC, or other validated techniques [54]. Entrapment efficiency is then calculated using the equation: Entrapment Efficiency (%) = (Actual drug content / Theoretical drug content) × 100. A high entrapment efficiency, typically above 70%, signifies successful encapsulation of the drug and minimal loss during formulation, highlighting the robustness of the preparation process⁵⁵.

6.6 In Vitro Drug Release Studies:

Drug release behavior of floating microspheres is typically evaluated using a USP dissolution apparatus—either Type I (basket) or Type II (paddle)—in simulated gastric fluid maintained at 37 °C and stirred at an appropriate speed⁵⁶. Samples are collected at predefined time intervals, and the drug concentration is quantified using UV spectrophotometry or chromatographic methods. The release data are then fitted to various kinetic

models to understand the mechanism of drug release. These include zero-order (constant release), first-order (concentration-dependent), Higuchi (diffusion-controlled), Korsmeyer–Peppas (mechanistic interpretation), and Hixson–Crowell (surface area-dependent release). Key model-fitting parameters such as the correlation coefficient (r^2) and release exponent (n) help identify the dominant release mechanism and evaluate how well the formulation meets desired performance criteria⁵⁷.

6.7 Mucoadhesive Properties:

Some floating microsphere formulations are designed with mucoadhesive polymers to further improve gastric retention by enabling the particles to adhere to the gastric mucosal surface. This added adhesion helps the microspheres resist gastric motility and prolongs their residence time, thereby enhancing drug absorption and overall therapeutic efficacy. Mucoadhesive strength is commonly evaluated using texture analyzers or tensile testing instruments, which measure the force required to detach the microspheres from a mucus layer or excised gastric mucosa. These tests mimic physiological conditions and provide quantitative data on adhesive performance. Factors such as polymer type, molecular weight, hydration capacity, and surface characteristics directly influence mucoadhesion. Strong mucoadhesive interactions ensure prolonged localization in the stomach, which is especially beneficial for drugs with narrow absorption windows or those requiring extended gastric exposure. This approach integrates both buoyancy and adhesion to create a robust gastroretentive drug delivery system⁵⁸.

7. Factors Influencing Floating Microsphere Performance:

7.1 Formulation Variables:

Several formulation factors play a crucial role in determining the buoyancy, structural integrity, and drug-release performance of floating microspheres. The type and concentration of polymer are particularly important—higher polymer levels increase matrix viscosity and density, which can strengthen the structure but may alter flotation and release patterns. Hydrophobic polymers generally improve buoyancy by reducing water penetration, whereas hydrophilic polymers promote faster drug release but may compromise floatation stability⁵⁹. Drug loading also significantly influences microsphere behavior; as drug content increases, overall density may rise, potentially reducing buoyancy, while the polymer-to-drug ratio strongly affects release kinetics⁶⁰. Plasticizers further modify performance by lowering the glass transition temperature and enhancing polymer flexibility. This improves permeability and mechanical strength, but only when used at

optimized levels to avoid weakening the microsphere shell⁶¹. Additionally, the choice of organic solvent impacts particle formation, as its volatility, polarity, and miscibility dictate solidification rate, internal porosity, and residual solvent levels, ultimately shaping microsphere quality and functionality⁶².

7.2 Process Variables:

Several critical process parameters significantly influence the quality, size, and performance of floating microspheres during their preparation. Stirring speed is one of the most important factors, as it determines the size of emulsion droplets; higher speeds generally yield smaller, more uniform microspheres but can also introduce excessive shear, leading to aggregation or structural distortion⁶³. Temperature also plays a key role by controlling solvent evaporation, polymer solubility, and the rate of microsphere solidification. While elevated temperatures can speed up the process, they must be carefully controlled to avoid degradation of heat-sensitive drugs⁶⁴. The concentration of emulsifier helps stabilize the droplet interface, preventing coalescence and ensuring consistent particle size; however, the optimal amount depends on the hydrophobicity of the polymer and target characteristics of the formulation⁶⁵. Additionally, the phase volume ratio—the proportion of dispersed phase to continuous phase—affects particle size, process yield, and reproducibility, making it essential for ensuring consistent batch performance⁶⁶.

7.3 Physiological Variables:

Floating microspheres must function effectively within the highly dynamic and variable environment of the stomach, where several physiological factors significantly influence their in vivo performance. **Gastric pH** fluctuates widely, ranging from highly acidic conditions in the fasted state to higher pH levels after food intake. These variations can affect polymer swelling, drug stability, and overall buoyancy. **Gastric motility patterns**, including peristaltic movements and migrating motor complexes, can either support prolonged retention or push the microspheres into the intestine prematurely. Additionally, **mucus secretion** influences how microspheres interact with the gastric lining; increased mucus can enhance retention for formulations with mucoadhesive properties, whereas reduced mucus may diminish adhesion. The **fed or fasted state** also plays a crucial role—food delays gastric emptying and may enhance floating time, while the fasted state accelerates transit, challenging the sustained buoyancy of the system. Therefore, floating microsphere formulations must be robust enough to maintain structural integrity, floatation,

and controlled drug release despite these fluctuating gastric conditions, ensuring consistent therapeutic performance throughout the dosing interval⁶⁷.

8. Stability Considerations:

Floating microspheres can experience both physical and chemical stability challenges during storage, which may affect their performance and shelf life. Physically, they may undergo aggregation, lose buoyancy, or exhibit changes in porosity and particle structure due to factors like temperature, humidity, and light exposure^[68]. To enhance long-term stability, techniques such as freeze-drying or spray-drying are commonly used along with cryoprotectants, while sealed packaging with desiccants helps preserve integrity during storage⁶⁹. Chemically, instability may arise from drug degradation, polymer breakdown, or unfavorable drug–polymer interactions. These issues are typically evaluated through accelerated stability studies conducted under ICH-recommended conditions (40°C/75% RH), which help predict shelf life and identify suitable storage environments⁷⁰. Analytical tools such as HPLC, DSC, FTIR, and XRD are essential for monitoring chemical changes and assessing compatibility throughout the storage period⁷¹.

9. Therapeutic Applications:

Floating microspheres have shown significant potential across various therapeutic areas by improving gastric retention and enhancing drug absorption. In *H. pylori* treatment, microspheres containing antibiotics such as amoxicillin, clarithromycin, and metronidazole prolong gastric residence, increasing drug concentration at the infection site and improving eradication rates, while sustained release helps reduce dosing frequency and systemic side effects⁷². For antihypertensive drugs like propranolol and metoprolol, which have narrow absorption windows in the upper GIT, floating microspheres enhance bioavailability and provide more stable plasma levels through controlled release⁷³. Similarly, gastric ulcer medications including ranitidine, famotidine, and omeprazole benefit from prolonged gastric retention, maintaining effective drug levels and supporting faster healing with fewer doses⁷⁴. In diabetes management, metformin-loaded floating microspheres help overcome its limited absorption window, ensuring sustained plasma concentrations, improved glycemic control, and reduced gastrointestinal discomfort⁷⁵. Additionally, floating microspheres have been explored in antiretroviral therapy, where enhanced bioavailability and sustained drug levels may improve patient adherence and overall treatment outcomes in HIV management⁷⁶.

10. Recent Advances and Future Perspectives:

Future directions for floating microsphere technology highlight several innovative advancements aimed at improving therapeutic precision and patient outcomes. Combination drug delivery systems are being developed to allow simultaneous release of multiple agents with coordinated kinetics, which is especially valuable in multidrug therapies such as *H. pylori* eradication and complex antihypertensive regimens⁷⁷. Stimuli-responsive floating microspheres—capable of reacting to pH changes, enzymatic activity, or magnetic fields—offer more precise and controlled drug release in response to physiological cues⁷⁸. Targeted floating microspheres functionalized with ligands such as antibodies, peptides, or aptamers further enhance site-specific interactions within the stomach, improving drug localization and therapeutic selectivity⁷⁹. Integration of nanotechnology has also led to hybrid systems that embed nanoparticles within floating microspheres, enabling enhanced cellular uptake and improved delivery of poorly soluble or biological drugs⁸⁰. Additionally, advances in personalized medicine, including 3D printing and on-demand manufacturing, support the customization of floating microsphere formulations tailored to an individual's physiological profile and therapeutic requirements⁸¹.

11. Challenges and Limitations:

Despite their promising therapeutic benefits, floating microspheres still face several important challenges that limit broader clinical and commercial adoption. One major issue is manufacturing scalability, as many preparation methods optimized at the laboratory level do not easily translate to industrial-scale production, requiring significant process refinement and specialized equipment for commercial viability⁸². Regulatory hurdles also arise because these systems demand extensive characterization, strict quality control, and strong in vitro–in vivo correlation data to meet approval standards⁸³. Additionally, patient-to-patient variability in gastric physiology, motility, and food intake can influence performance, so formulations must be robust enough to function consistently across diverse populations⁸⁴. Economic considerations further impact their adoption, as floating microspheres often incur higher production costs compared to conventional oral dosage forms, making thorough cost-benefit analyses essential to justify their clinical advantages⁸⁵.

12. CONCLUSION:

Floating microspheres represent a sophisticated approach to gastroretentive drug delivery, offering significant advantages in bioavailability

enhancement, controlled release, and therapeutic efficacy. The technology has matured considerably, with well-established formulation principles, diverse preparation methods, and comprehensive characterization techniques. Successful translation from laboratory research to clinical applications has been demonstrated for multiple therapeutic categories. Future developments will likely focus on intelligent stimuli-responsive systems, integration with nanotechnology platforms, and personalized medicine applications. Addressing current challenges in manufacturing scalability, regulatory pathways, and cost-effectiveness will accelerate market adoption. As understanding of gastric physiology and polymer science advances, floating microsphere technology will continue evolving to meet the complex demands of modern pharmaceutical therapy. The multidisciplinary nature of this field, spanning pharmaceuticals, materials science, physiology, and clinical medicine, ensures continued innovation and refinement. Floating microspheres will remain an important tool in the pharmaceutical scientist's arsenal for optimizing oral drug delivery and improving patient outcomes.

REFERENCES:

1. Sharma A, Jain N, Sareen R. Nanocarriers for diagnosis and targeting of breast cancer. *BioMed Res Int.* 2013;2013:960821.
2. Singh BN, Kim KH. Floating drug delivery systems: an approach to oral controlled drug delivery via gastric retention. *J Control Release.* 2000;63(3):235-259.
3. Streubel A, Siepmann J, Bodmeier R. Gastroretentive drug delivery systems. *Expert Opin Drug Deliv.* 2006;3(2):217-233.
4. Bardonnet PL, Faivre V, Pugh WJ, Piffaretti JC, Falson F. Gastroretentive dosage forms: overview and special case of *Helicobacter pylori*. *J Control Release.* 2006;111(1-2):1-18.
5. Jain SK, Agrawal GP, Jain NK. A novel calcium silicate based microspheres of repaglinide: in vivo investigations. *J Control Release.* 2006;113(2):111-116.
6. Rouge N, Buri P, Doelker E. Drug absorption sites in the gastrointestinal tract and dosage forms for site-specific delivery. *Int J Pharm.* 1996;136(1-2):117-139.
7. Guyton AC, Hall JE. *Textbook of Medical Physiology.* 13th ed. Philadelphia: Elsevier; 2015.
8. Dressman JB, Berardi RR, Dermentzoglou LC, et al. Upper gastrointestinal pH in young healthy men and women. *Pharm Res.* 1990;7(7):756-761.
9. Code CF, Marlett JA. The interdigestive myo-electric complex of the stomach and small bowel of dogs. *J Physiol.* 1975;246(2):289-309.
10. Vantrappen G, Janssens J, Hellemans J, Ghoos Y. The interdigestive motor complex of normal subjects and patients with bacterial overgrowth of the small intestine. *J Clin Invest.* 1977;59(6):1158-1166.
11. Klausner EA, Lavy E, Friedman M, Hoffman A. Expandable gastroretentive dosage forms. *J Control Release.* 2003;90(2):143-162.
12. Moore JG, Christian PE, Coleman RE. Gastric emptying of varying meal weight and composition in man. *Dig Dis Sci.* 1981;26(1):16-22.
13. Washington N, Washington C, Wilson CG. *Physiological Pharmaceutics: Barriers to Drug Absorption.* 2nd ed. London: Taylor & Francis; 2001.

14. Whitehead L, Fell JT, Collett JH, Sharma HL, Smith AM. Floating dosage forms: an in vivo study demonstrating prolonged gastric retention. *J Control Release*. 1998;55(1):3-12.
15. Strübing S, Abboud T, Contri RV, Metz H, Mäder K. New insights on poly(vinyl acetate)-based coated floating tablets: characterisation of hydration and CO₂ generation by benchtop MRI and its relation to drug release and floating strength. *Eur J Pharm Biopharm*. 2008;69(2):708-717.
16. Srivastava AK, Ridhurkar DN, Wadhwa S. Floating microspheres of cimetidine: formulation, characterization and in vitro evaluation. *Acta Pharm*. 2005;55(3):277-285.
17. Arora S, Ali J, Ahuja A, Khar RK, Baboota S. Floating drug delivery systems: a review. *AAPS PharmSciTech*. 2005;6(3):E372-E390.
18. Kawashima Y, Niwa T, Takeuchi H, Hino T, Itoh Y. Hollow microspheres for use as a floating controlled drug delivery system in the stomach. *J Pharm Sci*. 1992;81(2):135-140.
19. Tanwar YS, Naruka PS, Ojha GR. Development and evaluation of floating microspheres of verapamil hydrochloride. *Braz J Pharm Sci*. 2007;43(4):529-534.
20. Soppimath KS, Kulkarni AR, Aminabhavi TM. Development of hollow microspheres as floating controlled-release systems for cardiovascular drugs: preparation and release characteristics. *Drug Dev Ind Pharm*. 2001;27(6):507-515.
21. Clarke GM, Newton JM, Short MB. Gastrointestinal transit of pellets of differing size and density. *Int J Pharm*. 1993;100(1-3):81-92.
22. Hwang SJ, Park H, Park K. Gastric retentive drug-delivery systems. *Crit Rev Ther Drug Carrier Syst*. 1998;15(3):243-284.
23. Garg R, Gupta GD. Progress in controlled gastroretentive delivery systems. *Trop J Pharm Res*. 2008;7(3):1055-1066.
24. Deshpande AA, Shah NH, Rhodes CT, Malick W. Development of a novel controlled-release system for gastric retention. *Pharm Res*. 1997;14(6):815-819.
25. Gohel MC, Patel MM, Amin AF, Agrawal R, Dave R, Bariya N. Formulation design and optimization of mouth dissolve tablets of nimesulide using vacuum drying technique. *AAPS PharmSciTech*. 2004;5(3):e36.
26. Thakral S, Thakral NK, Majumdar DK. Eudragit: a technology evaluation. *Expert Opin Drug Deliv*. 2013;10(1):131-149.
27. Anal AK, Stevens WF. Chitosan-alginate multilayer beads for controlled release of ampicillin. *Int J Pharm*. 2005;290(1-2):45-54.
28. Chowdary KP, Srinivas YK. Mucoadhesive drug delivery systems: a review of current status. *Indian Drugs*. 2000;37(9):400-406.
29. Pawar VK, Kansal S, Garg G, et al. Gastroretentive dosage forms: a review with special emphasis on floating drug delivery systems. *Drug Deliv*. 2011;18(2):97-110.
30. Sheth PP, Tossounian JL. The hydrodynamically balanced system: a novel drug delivery system for oral use. *Drug Dev Ind Pharm*. 1984;10(2):313-339.
31. Rowe RC, Sheskey PJ, Quinn ME. *Handbook of Pharmaceutical Excipients*. 6th ed. London: Pharmaceutical Press; 2009.
32. Gupta PK, Leung SH, Robinson JR. Bioadhesives/mucoadhesives in drug delivery to the gastrointestinal tract. In: Mathiowitz E, Chickering DE, Lehr CM, eds. *Bioadhesive Drug Delivery Systems*. New York: Marcel Dekker; 1999:65-92.
33. Desai S, Bolton S. A floating controlled-release drug delivery system: in vitro-in vivo evaluation. *Pharm Res*. 1993;10(9):1321-1325.
34. Jain D, Raturi R, Jain V, Bansal P, Singh R. Recent technologies in pulsatile drug delivery systems. *Biomatter*. 2011;1(1):57-65.
35. El-Kamel AH, Sokar MS, Gamal SS, Naggar VF. Preparation and evaluation of ketoprofen floating oral delivery system. *Int J Pharm*. 2001;220(1-2):13-21.
36. Joseph NJ, Lakshmi S, Jayakrishnan A. A floating-type oral dosage form for piroxicam based on hollow polycarbonate microspheres: in vitro and in vivo evaluation in rabbits. *J Control Release*. 2002;79(1-3):71-79.
37. Jain SK, Awasthi AM, Jain NK, Agrawal GP. Calcium silicate based microspheres of repaglinide for gastroretentive floating drug delivery: preparation and in vitro characterization. *J Control Release*. 2005;107(2):300-309.
38. Li CL, Martini LG, Ford JL, Roberts M. The use of hypromellose in oral drug delivery. *J Pharm Pharmacol*. 2005;57(5):533-546.
39. Srinatha A, Pandit JK, Singh S. Ionic cross-linked chitosan beads for extended release of ciprofloxacin: in vitro characterization. *Indian J Pharm Sci*. 2008;70(1):16-21.
40. Rajinikanth PS, Balasubramaniam J, Mishra B. Development and evaluation of a novel floating in situ gelling system of amoxicillin for eradication of *Helicobacter pylori*. *Int J Pharm*. 2007;335(1-2):114-122.
41. Masters K. *Spray Drying Handbook*. 5th ed. London: Longman Scientific & Technical; 1991.
42. Choi DH, Kim NA, Chu CC, Chu CW, Yoo HS. Pulsed electromagnetic field (PEMF) treatment can modulate cerebral blood flow and attenuate brain injury after transient middle cerebral artery occlusion in rats. *Bioelectromagnetics*. 2013;34(5):352-361.
43. Bock N, Dargaville TR, Woodruff MA. Electrospraying of polymers with therapeutic molecules: state of the art. *Prog Polym Sci*. 2012;37(11):1510-1551.
44. Jung J, Perrut M. Particle design using supercritical fluids: literature and patent survey. *J Supercrit Fluids*. 2001;20(3):179-219.
45. Awad A, Trenfield SJ, Gaisford S, Basit AW. 3D printed medicines: a new branch of digital healthcare. *Int J Pharm*. 2018;548(1):586-596.
46. Merkus HG. *Particle Size Measurements: Fundamentals, Practice, Quality*. Dordrecht: Springer; 2009.
47. Patel JK, Patel RP, Amin AF, Patel MM. Formulation and evaluation of mucoadhesive glipizide microspheres. *AAPS PharmSciTech*. 2005;6(1):E49-E55.
48. Goldstein JI, Newbury DE, Michael JR, et al. *Scanning Electron Microscopy and X-Ray Microanalysis*. 4th ed. New York: Springer; 2018.
49. Eaton P, West P. *Atomic Force Microscopy*. Oxford: Oxford University Press; 2010.
50. United States Pharmacopoeia. *USP 43-NF 38*. Rockville: United States Pharmacopoeial Convention; 2020.
51. Choi BY, Park HJ, Hwang SJ, Park JB. Preparation of alginate beads for floating drug delivery system: effects of CO₂ gas-forming agents. *Int J Pharm*. 2002;239(1-2):81-91.
52. Webb PA. An introduction to the physical characterization of materials by mercury intrusion porosimetry with emphasis on reduction and presentation of experimental data. *Micromeritics Instrument Corp*. 2001;2:1-20.
53. Dave BS, Amin AF, Patel MM. Gastroretentive drug delivery system of ranitidine hydrochloride: formulation and in vitro evaluation. *AAPS PharmSciTech*. 2004;5(2):e34.
54. International Conference on Harmonisation. *ICH Q2(R1): Validation of Analytical Procedures*. Geneva: ICH; 2005.
55. Jain SK, Jain A, Gupta Y, Ahirwar M. Design and development of hydrogel beads for targeted drug delivery to the colon. *AAPS PharmSciTech*. 2007;8(3):E56.
56. Food and Drug Administration. *Guidance for Industry: Dissolution Testing of Immediate Release Solid Oral Dosage Forms*. Rockville: FDA; 1997.
57. Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. *Eur J Pharm Sci*. 2001;13(2):123-133.
58. Smart JD. The basics and underlying mechanisms of mucoadhesion. *Adv Drug Deliv Rev*. 2005;57(11):1556-1568.

59. Nayak AK, Maji R, Das B. Gastroretentive drug delivery systems: a review. *Asian J Pharm Clin Res.* 2010;3(1):2-10.
60. Sato Y, Kawashima Y, Takeuchi H, Yamamoto H. Physicochemical properties to determine the buoyancy of hollow microspheres prepared by emulsion solvent diffusion method. *Eur J Pharm Biopharm.* 2003;55(3):297-304.
61. Bodmeier R, Paeratakul O. Plasticizer uptake by aqueous colloidal polymer dispersions used for the coating of solid dosage forms. *Int J Pharm.* 1997;152(1):17-26.
62. O'Donnell PB, McGinity JW. Preparation of microspheres by the solvent evaporation technique. *Adv Drug Deliv Rev.* 1997;28(1):25-42.
63. Freitas S, Merkle HP, Gander B. Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. *J Control Release.* 2005;102(2):313-332.
64. Bodmeier R, Chen H. Preparation of biodegradable poly(±)lactide microparticles using a spray-drying technique. *J Pharm Pharmacol.* 1988;40(11):754-757.
65. Washington C. Stability of lipid emulsions for drug delivery. *Adv Drug Deliv Rev.* 1996;20(2-3):131-145.
66. Li M, Rouaud O, Poncelet D. Microencapsulation by solvent evaporation: state of the art for process engineering approaches. *Int J Pharm.* 2008;363(1-2):26-39.
67. Oberle RL, Chen TS, Lloyd C, et al. The influence of the interdigestive migrating myoelectric complex on the gastric emptying of liquids. *Gastroenterology.* 1990;99(5):1275-1282.
68. Langer K, Anhorn MG, Steinhauser I, et al. Human serum albumin (HSA) nanoparticles: reproducibility of preparation process and kinetics of enzymatic degradation. *Int J Pharm.* 2008;347(1-2):109-117.
69. Abdelwahed W, Degobert G, Stainmesse S, Fessi H. Freeze-drying of nanoparticles: formulation, process and storage considerations. *Adv Drug Deliv Rev.* 2006;58(15):1688-1713.
70. International Conference on Harmonisation. ICH Q1A(R2): Stability Testing of New Drug Substances and Products. Geneva: ICH; 2003.
71. Mura P, Fucci MT, Manderoli A, Bramanti G, Parrini P. Thermal behavior and dissolution properties of naproxen from binary and ternary solid dispersions. *Drug Dev Ind Pharm.* 1999;25(3):257-264.
72. Umamaheshwari RB, Jain S, Bhadra D, Jain NK. Floating microspheres bearing acetohydroxamic acid for the treatment of Helicobacter pylori. *J Pharm Pharmacol.* 2003;55(12):1607-1613.
73. Tadros MI. Controlled-release effervescent floating matrix tablets of ciprofloxacin hydrochloride: development, optimization and in vitro-in vivo evaluation in healthy human volunteers. *Eur J Pharm Biopharm.* 2010;74(2):332-339.
74. Baumgartner S, Kristl J, Vrečer F, Vodopivec P, Zorko B. Optimisation of floating matrix tablets and evaluation of their gastric residence time. *Int J Pharm.* 2000;195(1-2):125-135.
75. Hamdani J, Moës AJ, Amighi K. Physical and thermal characterisation of Precirol and Compritol as lipophilic glycerides used for the preparation of controlled-release matrix pellets. *Int J Pharm.* 2003;260(1):47-57.
76. Prajapati VD, Jani GK, Khutliwala TA, Zala BS. Raft forming system - an upcoming approach of gastroretentive drug delivery system. *J Control Release.* 2013;168(2):151-165.
77. Sangekar S, Vadino WA, Chaudry I, Parr A, Beihn R, Digenis G. Evaluation of the effect of food and specific gravity of tablets on gastric retention time. *Int J Pharm.* 1987;35(3):187-191.
78. Sultana Y, Ajil M, Ali A, Zafar S. Evaluation of carbopol-methyl cellulose based sustained-release ocular delivery system for pefloxacinmesylate using rabbit eye model. *Pharm Dev Technol.* 2006;11(3):313-319.
79. Hoffman AS. The origins and evolution of "controlled" drug delivery systems. *J Control Release.* 2008;132(3):153-163.
80. Hans ML, Lowman AM. Biodegradable nanoparticles for drug delivery and targeting. *Curr Opin Solid State Mater Sci.* 2002;6(4):319-327.
81. Alomari M, Mohamed FH, Basit AW, Gaisford S. Personalised dosing: printing a dose of one's own medicine. *Int J Pharm.* 2015;494(2):568-577.
82. Prusse U, Bilancetti L, Bučko M, et al. Comparison of different technologies for alginate beads production. *Chem Pap.* 2008;62(4):364-374.
83. Emami J. In vitro - in vivo correlation: from theory to applications. *J Pharm Pharm Sci.* 2006;9(2):169-189.
84. Rubinstein A, Tirosh B, Baluom M, et al. The rationale for peptide drug delivery to the colon and the potential of polymeric carriers as effective tools. *J Control Release.* 1997;46(1-2):59-73.
85. Lee VH, Robinson JR. Topical ocular drug delivery: recent developments and future challenges. *J Ocul Pharmacol.* 1986;2(1):67-108.